博客
关于我
2019牛客网暑期多校赛第七场B题--Irreducible Polynomial--多项式可分解判别
阅读量:741 次
发布时间:2019-03-21

本文共 151 字,大约阅读时间需要 1 分钟。

判断多项式是否不可分解的关键在于其次数和二次项情况。具体规则如下:

  • 如果多项式的次数n大于2,则无法直接判断一定能分解,但根据问题描述,当n>2或n=2且判别式大于等于0时,可以确定多项式可分解。

  • 因此,编写程序时,当n≥2且判别式满足条件时,返回No;否则返回Yes。

  • 最终,代码实现了这个判断逻辑。

    转载地址:http://zyvgz.baihongyu.com/

    你可能感兴趣的文章
    Objective-C实现activity selection活动选择问题算法(附完整源码)
    查看>>
    Objective-C实现AC算法(Aho-Corasick) 算法(附完整源码)
    查看>>
    Objective-C实现adaboost算法(附完整源码)
    查看>>
    Objective-C实现Adler32算法(附完整源码)
    查看>>
    Objective-C实现AES算法(附完整源码)
    查看>>
    Objective-C实现AffineCipher仿射密码算法(附完整源码)
    查看>>
    Objective-C实现aliquot sum等分求和算法(附完整源码)
    查看>>
    Objective-C实现all combinations所有组合算法(附完整源码)
    查看>>
    Objective-C实现all permutations所有排列算法(附完整源码)
    查看>>
    Objective-C实现all subsequences所有子序列算法(附完整源码)
    查看>>
    Objective-C实现AlphaNumericalSort字母数字排序算法(附完整源码)
    查看>>
    Objective-C实现alternate disjoint set不相交集算法(附完整源码)
    查看>>
    Objective-C实现alternative list arrange备选列表排列算法(附完整源码)
    查看>>
    Objective-C实现An Armstrong number阿姆斯特朗数算法(附完整源码)
    查看>>
    Objective-C实现anagrams字谜算法(附完整源码)
    查看>>
    Objective-C实现ApproximationMonteCarlo蒙特卡洛方法计算pi值算法 (附完整源码)
    查看>>
    Objective-C实现area under curve曲线下面积算法(附完整源码)
    查看>>
    Objective-C实现argmax函数功能(附完整源码)
    查看>>
    Objective-C实现arithmetic算术算法(附完整源码)
    查看>>
    Objective-C实现armstrong numbers阿姆斯壮数算法(附完整源码)
    查看>>